Generalized Nakayama Conjecture for C-Orthogonal-Finite Algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof for a generalized Nakayama conjecture

In a recent paper Külshammer, Olsson, and Robinson proved a deep generalization of the Nakayama conjecture for symmetric groups. We provide a similar but a shorter and relatively elementary proof of their result. Our method enables us to obtain a more general H-analogue of the Nakayama conjecture where H is a set of positive integers.

متن کامل

Auslander Algebras of Self-Injective Nakayama Algebras

For the Auslander algebras E of self-injective Nakayama algebras, the Δ-filtrations of the submodules of indecomposable projective Emodules are determined, a class of Δ-filtered E-modules without selfextensions are constructed, and the Ringel dual of E is described. Mathematics Subject Classifications: 16G10

متن کامل

Nakayama automorphisms of Frobenius algebras

We show that the Nakayama automorphism of a Frobenius algebra R over a field k is independent of the field (Theorem 4). Consequently, the k-dual functor on left R-modules and the bimodule isomorphism type of the k-dual of R, and hence the question of whether R is a symmetric k-algebra, are independent of k. We give a purely ring-theoretic condition that is necessary and sufficient for a finite-...

متن کامل

Orthogonal Polynomials and Generalized Oscillator Algebras

For any orthogonal polynomials system on real line we construct an appropriate oscillator algebra such that the polynomials make up the eigenfunctions system of the oscillator hamiltonian. The general scheme is divided into two types: a symmetric scheme and a non-symmetric scheme. The general approach is illustrated by the examples of the classical orthogonal polynomials: Hermite, Jacobi and La...

متن کامل

Residually Finite Dimensional C*-algebras

A C*-algebra is called residually finite dimensional (RFD for brevity) if it has a separating family of finite dimensional representations. A C*-algebra A is said to be AF embeddable if there is an AF algebra B and a ∗-monomorphisms α : A→ B. In this note we discuss the question of AF embeddability of RFD algebras. Since a C*-subalgebra of a nuclear C*-algebra must be exact [Ki], the nonexact R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematics

سال: 2013

ISSN: 2160-7583,2160-7605

DOI: 10.12677/pm.2013.31001